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ON FLOW OF ELECTRICALLY CONDUCTING FLUIDS OVER
A FLAT PLATE IN THE PRESENCE OF A

TRANSVERSE MAGNETIC FIELD ‘

By VBENONJ. Rossow

SUMMARY

Thewe oj a magneticjield to wntrol thz motion oj electrically
conducting J?UMSis studied. The in.compi-easibleboundary-
Iayer solutions are jound for $OW over a @t plati when the
magn.dicjield is @ed relative to the plute or to thejiuid. The
eguations are integrakl numerically jor the e$ect of the trans-
verse magnetic jield on the velocity and temperature projikxl
and hence, the skin jm”ctwnand rate oj heat trarwjer.

It is concluded that the skin jrictbn and the heat-transjer
rate are reduced when the ikamuwmemagnetic jMd h jixeo?
relatioeto the plate and increasedwhenjixed relaiiveto ti$uid.
The total drag is increased in all of the cases studied.

INTRODUCTION

It lms been said that n fluid at a very high temperature is
like a universal solvent which camot be contained. A
possible method of centaining this fluid is suggested when
it is noted that at such a high temperature it would surely
centain ions and quite probably also free electrons. The
fluid would then be an electrical conductor. The invisible
hand of electrical and magnetic fields can then be used to
induce forces on the fluid such that it is prevented horn
coming in direct contact with a wall which it would &solve.

A somewhat similar technique has been in use for some
time in the metal purification industry. It employs a high-
frequency magnetic field which causes eddy currents in a
lump of molten metal which in turn react with the imposed
magnetic field. The metal is thereby suspended in space
if the imposed magnetic field is made strong enough.

Another example is the so-called “perhapsatron” described
briefly in reference 1. A gas in a doughnut shaped container
is heated to a high temperature by an electriml current dis-
charge. Through the use of the interaction of the resulting
ion current and a magnetic field, the hot gas is prevented from
coming in contact with the surface of the vessel. An appli-
cation of similar principles was used in thermonuclear fusion
experiments in the Soviet Union. The techniques and
results described very briefly in reference 2 indicate that it
wm possible to keep the hot fluid from the walls and to
concentratee the hot gases quickly so as to generate a focusing
shock wave.

iSu~rwdes A’AOA TN W71by Vcmon J. Rmsow, 1057.

These examples indicate the possibilities which may be
realized through the use of a magnetic-field force on a flowing
conducting fluid. A number of situations exist in aero-
dynamics wherein a magnetic or electrical field might be
used to alleviate high convective heat-transfer rates to a wall.
Such problems arise in the flow of air in the boundary layer
and in the vicinity of stagnation regions of an aircraft moving
at very high speeds. If the velocity is high enough the air is
ionized and, therefore, electrically conducting. See, for
example, references 3 and 4. Other examples are those
associated with the flow of the combustion products (which
are hot and generally electrically conducting, refs. 5 through
7) in the propulsion units of aircraft.

The extent to which a given heating problem can be
alleviated is as yet difiicult to determine. It would be well
if a few theoretical results were available to evalunte the
effect of a magnetic field on the drag and heat-transfer rate.
An attempt to include dl the aerodynamic features of the
flow of air over or inside an aircraft plus the magneto-
hydrodynamic (or more correctly, magneto-aerodynamic)
effects would render the problem so complicated as to make
its solution diflicult if not impossible. It is felt that n few
simple basic theoretical solutions would point out the
advantages or disadvantages and yield a rough estimate of
the various quantities entering the problem. It is the
purpose of this report to present the results of several such
solutions which, it is hoped, will extend the information
already available so that such estimates can be made.
Several applications of the results are indicated.

PRINCIPALSYMBOLS

;,2 magnetic induction, lines/sq in.
cf local skin-friction coeilicient
0, heat oapacity of air at constant pressure,

Btu/slug ‘F

z electric field intensity, volts/in.

E total energy, CpT+~

erj error function’
e$c ‘ complementary error function, l-erj
f.0 dimensionless Blasius boundary-layer

stream function
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dimensionless stream function, equation
(26)

force, lb
local heat-transfer coeilicient, Btu/sec ft?

“1?
–,

magnetic intensity, ~~ (ampere) (turns)/ii.

electric current, amp

electric current density in the fluid, amp/sq
in.

electric current density associated with
generation of magnetic field, amp/sq in.

thermal conductivity, Btu/sec ft’ OF/ft
characteristic length

UBO’
magnetic parameter, —I per in.pum
UB02
—J pex sec

P

rrslw
magnetic Hartmrum number, —

P
pressure, lb/sq in.
BW
pu

Reynolds number
Laplace transform variable
time, sec
temperature, “R
velocity components in x,y~ directions
Laplace transform of velocity u (see eq.

(14))

velocity, f t/see
coordinate axes, z alined with free stream

—

excess charge density, coulombfcu in.
1magnetic viscosity, —

%aji
coeilicient of viscosity, slugs/ft sec
magnetic permeability, (volt) (second)/

(ampere) (k@

kinematic tisity, ~ ft’lsec

x
density of fluid, slugs/cu ft
conductivity, mhos/ii.
shear stres, lb/sq in.
stream function

SUBSCRIPTS
basic quanti~
free stream
magnetic induction
electron
at plate, v=y=O

SUPEIU7CRIPT13

vector quanti~
( )’, ( )“, ( )’” derivatives

HISTORICALREVIEW’OF MAGNETO-HYDRODYNAMICS

The earliestknown published works treating rLproblem in
the flow of an electrically conducting fluid through a mng-
netic field are those of Hartmarm and of Hmtmrmn and
Lazarus in references 8 and 9. Since that time a number of
theoretical and experimental studies have been carried
out. Some of these pertain to the flow of a conducting fluid
but a larger number relate to the dynamics of ionized clouds
or stars. No attempt will be made here to include a com-
plete discussion of the lattei group. Howwver, much can
be learned by studying the papers on the flow of conducting
fluids. These papers will be divided into several groups
according to the type of problem trated. .

1.

2.
22) .

3.
The
and

Flo; in a ch-&el &efs. $ through 19).
Flow about bodies of various shapes (refs. 20 through

Related papers on astronomy (refs. 23 through 26).
various papers will be reviewed briefly on a group baais
referemce tb particular papers given only in special

instances.
FLOWIN CHANNEL

Following his invention of the electromagnetic pump z in
1918, Hartmann, reference 8, developed equationa which
describe the steady-state flow inside a channel in the presence
of a magnetic field or a magnetic and electrical field. Inter-
est was stimulated in problems of this type when it was found
in reference 9 that a, turbulent stream could be stabilized to
the extent that it could be forced to return to a laminttrflow.
Such a sequence of events is opposite to the usual form of
transition whim a magnetic field is not present. Further
investigations by other authors, references 10 tludugh 10,
substantiated these results and led to the introduction o[

1terms such as “magnetic viscosity,” h=—
+tWUji’

‘(mngnetic

(
Hartmann number,” ~=B ~ and (@&.

A rigidity of the fluid is brought about by u coplanar
magnetic field so that stabilization is achieved becwuse tho
conducting fluid experiences a force which resists the motion
across the magnetic lines of force (ref. 13). For ex~mplo,
if the main fluid flow direction is parallel to the magnetic
lines of force, no interaction takes place unless some devia
tion or instabili~ arises. In this event, a restraining force
will be induced which is proportional and opposite to tho
velocity component perpendicular to the lines of forco,
tending to damp out the initial instability.

When the magnetic field is perpendicular to the flow
direction, a change is brought about in the velocity distribu-
tion. This may make the fluid flow more stable or unstable
to transition to turbulence. In the case of flow of an elec-
trically conducting fluid through a transverse magnetic field
in a two-dimensional channel (refs. 9 and 14), the chrmgo in
the’veloeity profile had a very favorable effect on transition.
Such is not always expected to be the case in othm flow
problems.

~El@rOmagnotfo PUDWMare uswl in atomicenergy p18ntato troosfer mdhct!vo
sohtkms from one plem to another (e. g., -P. 23of Atomlo Pow- SolontlfloArnorlmo
Wk. Simon and SolnrsterIn&. New York, 1Q5S).
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These two techniques which increase the stability of fluid
flowing in n two-dimensional charnel were studied theoreti-
cally in references 13 and 14. The’ transition boundaries
are given in graphical form for a range of the magnetic
pmameter. It was observed that a considerable increase in
lmnirmr run could be achieved at the higher values of the
magnetic parameter.

PLOWABOUTBODIES OF VARIOUS SHAPES

The papem describing the external flow of a conducting
fluid about bodies are small in number. The three references
listed, 20 through 22, describe the flow of a conducting fluid
around a circular cylinder and a sphere in the p~esence of a
magnetic field; the third paper treats the stability of the
flow between rotating cylinders. Streamlines are shown in
the first two cases and the stability boundary for the latter
case. Problems in this category are naturally more difEcult
than the unidirectional channel flow problems discussed in
the previous section.

RELATED PAPEW ON A9TRONOMY

A need for understanding the motion of electrically con-
ducting fluids (ionized clouds) has been felt by astronomers
for some time. The dimensions and quantities considered
are generally not reproducible in the laboratory or in the
earth’s atmosphere; however, some of the equations and
results may be applied to aerodynamic problems.

In reference 23, Bntchelor investigated the possibility of
spontaneous magnetic fields arisiig in a conducting medium
ns a result of turbulence. He found that unless 47jio>1
such fields cmnot occur. In all foreseeable problems in
aerodynamics 4@ov is many orders of magnitude less than 1,
ruling out spontaneous magnetic fields in a fluid due to
turbulence.

The reamer and velocity at which pressure wavea are
propagated in an ionized fluid and other cosmic problems
are treated in references 24 through 26. The resul~” of
these studies on wave propagation maybe useful in studying
interference problems on high-velocity aircraft.

MAGNETO-AERODYNAMICEQUATIONS

The equations which describe the flow of an electrically
conducting fluid in the presence of magnetic and electrical
fields will now be discussed. The equations are simplified
to the extent that the flow is assumed to be incompressible
and to have constant properties (CP, p, k) throughout the
flow field, In all cases except one, the electrical conductivity
of the fluid is assumed to be constant.

MOMENTUM-TRANSPORT EQUATIONS

The momentum-transport equations for the flow of a
viscous incompressible fluid consist of a wmbination of the
form terms arisii from the excess charge density 0, and in-
duced magnetic effect due to the motion of the”conducting
fluid through magnetic lines of force (see, e. g., refs. 23 and
27) rmd the usual Navier-Stokes relations (see, e. g., ref. 28).
In equation form, these force terms are,

where the term OFiemdts from the electrostatic force on the
excess charges due to the presence of an imposed electric

field ~. The second term describes the force on the fluid

due to the interaction of the electric current, ~, in the fluid

and the magnetic induction ~. The d.i.fferentid equation
can be written in vector notation as

where p is the fluid density, Ois the excess charge density,
and F is the magnetic permeability. The substantial deriva-
tive D/Dt is associated with the use of spatial coordinates.
A simplified version of Maxwell’s equations appropriate for
the present problem is

‘ dd=o; div 2=0; &=; (2a)
.

+ -)

curl H=47rJ (2b)

A reduced form of the generalized Ohm’s law is, from
reference 29,

;=U(Z+EZM) (2C)

The more complete form given as equation 2-22 in reference
29 includes additional terms accounting for gravity and pres-
sure gradient eilects. Both of these factors will be assumed
negligible in this analyak. It will also be assiuned that the
conductivity, a, does not have directional properties.

The continuity equation is

div -8=0 (3)

Equation (2b) expressesthe relation between the magnetic

intensity ~ and the total electric current density j. The

distinction between the current densities~ and ~ lies in their
location and action. Consider fit the situation when the

fluid is stationary and the electric field intensity j is zero.
The current density in the fluid is then zero. The magnetic

field strength $0 or magnetic induction ~O=$. is a result

of an electric current j. outside of the fluid. The current

density j. could be thought of as an electric current in a
coil or electromagnet outside the flow region producing n
magnetic field of a given number of lines of force per unit

area. The rdation between ?0 and ~. is given by equation
(2b). The basic magnetic field strength will be designated

+
as HO.

When a conducting fluid moves through the magnetic

lines of force, ~0, the positive and negative charges are each
accelerated in such a way that their average motion gives

rise to an electric current;= afix~, where ~=jO+~ The

quantity ~ is the magnetic induction resulting from the elec-

tric current ~ in the fluid. In this analysis $ will be con-
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sidered ns a perturbation on the basic field strength and-

negligible in comparison with ~.; that is, from equation (2b),

curl (2.+;) =4TE(jo+3 =4n--J
or

curl 20=4T-J0

curl :=4TF;
\$,here~~~.

If an electric potential $ were to be imposed across the

flow field, the current density would be changed by~=u~.
However, the boundary conditions will be taken so that the

+
impressed pot ential, E, is zero. Therefore, ~= ui&~o; that
is, the electric current is proportional to the voltage generated
by the relative motion of the fluid and magnetic field.

The fluid is assumed to be ionized and thereby an electrical
conductor. However, within any small but ilnite volume the
number of particles with positive and negative chaqp are
nearly equal. The total excess charge, 0, in this small but
finite volume will be taken as equal to zero. It has been
shown in reference 17 that a very d increase in viscosity
is realized due to the increased ordered-migration velocities
of positive and negative ions in the presence of the electric
field. This effect will be neglected and the electrostatic force

term, tl~ will be assumed to be identically zero.

The induced electromagnetic force term, ~XjO will now
be related to the local velocity vector. The procedure Usecl

in references 10, 19, and 22 which results in the magnetic

parameter ~—2 (ratio of electromagnetic and inertia forces)

and the magnetic viscosity A= & will not be used. In-

stead a procedure will be folIowed which will lead to the

mqgnetic parameter, Q= CIPll
‘J used by references 7, 9, 11, 12,pu

and 13.

A relation between ~X~ and the velocity is obtained from
equation (2). It will be assumed that:

(1) Magnetic field lines are perpendicular to free-stream
velocity.

(2) Permeability ji is constant throughout the fluid.
(3) The assumptions already made are that the excess

charge density o and imposed electric field intensity 2 are
assumed to be zero.

(4) Induced magnetic field ~ is negligible, linearizing the
induced magnetic force term.
The first assumption is not highly restrictive since the per-
pendicular component of the magnetic field is the only part
contributing a force which will change the laminar velocity
profile. The other assumptions are reasonable physical
nppro.simations.

If these assumptions are used together with equation (2c),
the induced magnetic force term becomes

++
j XBO

()
‘—=–; Gxiio X;.

P
(6)

From vector rel@ions,

However, it has been assumed that ~o is perpendicular to

the free-stream velocity ;= (assumption (l)). In the prob-
lems treated, the 10M velocity direction differs a rwgligiblo

amount from the free-stream direction so that ~,.fi=O and
the linearized magneto-hydrodynamic force term becomes

++
j XBo_UB02 +~u=mumc

P
(6)

The prirameterS m is related to the viscous Reynolds num-
ber and the Hmtmann number of references 8 through 12 by

UB021 IsB0212 1 =2
ml=—=— ——

&Jal p &J-x

Equation (1) may then be written as

(7)

In the development of ,equation (7), it was assumed that
the velocity of the magnetic field is zero. Since only tlm
inductive force is being considered, the second term becomes

%Y-” )
U UD for a magnetic field in uniform translation,

where fi~ is the velocity of the magnetic field.
When electrical currents flow in a plasma it is well to

define the conditions at the solid boundaries of the flow
field. The problems treated are assumed to be two-dimen-
sional with the electric current flowing from and to infinity
parallel to a flat plate and perpendicular to the stream
direction. The configuration may also be thought to ccm-
sist of flow in a wide channel with the two side walls as
conductcm connected by a conductor of negligible resistance
located outside of the influence of the flow field. The flow
in the middle of such a channel should approximate tlm
tio-dimmsional type of flow being analyzed. Such phe-
nomena as charge accumulation and boundary effects at the
walls will be assumed negligible.

THERMAL ENERGY TRANSPORT EQUATION I

The diiferantial equation describing the relationship be-
tween the convection and conduction of thermal energy
and the work done on an electrically conducting fluid in the
presence of a magnetic field is found by considering tho

JFrom electi% mot.x equatioq it tan h shown tk-at

form

“B”y-Pxv2f0dtY

and Uwefom

Q+%)w+:;%%:;=) (ma%i%!w”)Du.
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energy entering and leaving an elementary cubic box. The
result is given by

The derivation of equation (8), with the exception of the
second term on the right of the equal sign, can be found,
for example, in reference 28. The term on the left of the
equal sign takes account of the enthalpy transported by
the motion of the fluid or by convection. The fit term on
the right represents heat conducted from one element of
fluid to the next by molecular motion. The expression,
jz/u, is the heat added by the electrical current produced
by the motion of the fluid through magnetic lines of force
or by an imposed electrical field (see eq. (2c)). The re-
maining terms arise when work is done on the fluid by
either pressure or shear forces. The symbol D/Dt is the
substantial derivative of the particular quanti~ and V*
denotes the Lnplacian.

If the general expression for the electric current density,
as given by equation (2c), is inserted into the expr-ion
for the heat added by electrical meams, the result is

It has been assumed that the electric field ~ is zero and that
the magnetic field lines are perpendicular to the free-stream
direction. To a good approximation in the problems to be
considered, equation (9) can then be written as

i!4J*BoZ (lo)
!s

where ~ must be written as ( U— Ui?)zwhen relative motion
exists between the magnetic field and the plate. Equation
(8) is then

DT
{ [(3+(%)+(37+—=kv3T+uU2B:+~+P 2POPDt

IMPULSIVEMOTION OF A FLATPLATE

The impulsive motion of an in6nite flat plate 4in a viscous
fluid serves as a model for the boundary layer on a semi-
Mnito flat plate. The advantages of working the problem
of the impulsive motion of a flat plate are that it is simple
enough to yield a result in closed form and suggests the
proper choice of pmameters to be used on the more compli-
cated problem of a semi-infinite flat plate.

The velocity prdiles will be found for two cases. In the
first it will be assumed that the magnetic lines of force
are fixed relative ta the plate, and the second relative to the
fluid. In both cases the fluid is of uniform density a~d

4Tbls problem k oftaa referred to ae the “Eaylelgh problem” when the flnId is inmm-
IW&Wlo ond nonmndnctlw

viscosity, and has the same electrical conductivity through-
out. A third case, in which the magnetic field is fixed on
the plate and a compensating pressure gradient exists in the
fluid, will be shown to be equivalent to the case wherein the
magnetic field is iixed relative to the fluid. The problem
wherein the fluid conductivity varies will not be considered.
The fluid and plate will be assumed to be initially at rest.
At time t=O, the plate will move impulsively with a givew
velocity.

MAGNETIC HELD ~ RELATIVE TO TEE PLATE

.iit time t<O, the fluid, plate, and magnetic field are as-
sumed .to be everywhere stationary. At time t= O and for
W later times the plate and magnetic field are moving at
velocity U=U. (fig. 1). The problem is to iind the velocity- -
time hktory of th~ fl~d.

Y

%
—

—x-.

FmuEEl.—FIat plate moving impulsively through a fluid in the
presence of a knsverse magnetio field.

The velocity in a given_y=wmstant plane does not change
with z. It can then be reasoned that the vertical, o, and
tmmsveme,w, velocities are zero or negligible together with
the “pressuregradients in all directions. Equation (7) then
reduces to

(12)

Site the magnetic field is moving and the fluid is initially
at rest the relative motion must be accounted for. Equation
(12) is then. .

= (’–’%)=JJ ~ (13)

The boundary conditions are

U=u., y=o, t>o

U=o, y>o, t=o

The Laplage transform of the velocity u is detined as

J
m

~= e-’% dt (14)
o
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Appl+ying the Laplace transformation (see, e. g., refs.
30 and 31) to the tit term in equation (13) gives

~ ~u= “ _*, azc
osat, e ~ dt=+we-a’ ‘+ssO- t3-%C dt

o

= m

If the other terms of equation (13) are treated simikwly,
the transformed equation is

or

(15)

The solution to equation (15) is the sum of the solution of the
homogeneous equation plus the particular solution, that is,

The constant 0, is chosen equal to zero to fit the boundary
condition that Z must be finite at y= OJ. The integration
constant Cl(s) is found from the boundary condition at
y=O; that is, on the plate

I&o=%

The Laplace transform of u. is u./s. Therefore

and

~= “u” -@-’=8(8+7n~ 8+%VI (16)

Equation (16) can be inverted with the aid of reference 30.
Combining several terms gives

( )u=u. l—e–m%rj~ 2,1Z
(17)

The symbol erj denotes the error function of the argument.
The error function is discussed in reference 31 and tabulated
extensively in reference 32. Typical veloci~ preiiles are
shown in figure 2 (a). If ml is set equal to zero, equation (17)
reduces to the result for the Rayleigh problem; that is,

U=U4-’*)
The velocity is a function of y/2@ only and therefore a
single profile sufiices. However, when a magnetic field is
acting on the fluid, the velocity profiles are not similar
because they change with time according to e–m~. The fluid
at infinity is accelerated .by the magnetic field so that the
entire mass of fluid is accelerated by the magnetic field. It
is, in fact, accelerated more rapidly than when the-ohly force
is the viscous action between layers.

I-4

2,m,f ‘0---.,

‘.

.20-<:.

‘,

.40----:~
(b)

.4 .8 2

%

(a) Magneticfield lixed relative (b) Magnetio Md fixed relative
to pla~e. to fluid.

FIGURE 2.—Boundary-layer velocity profiles on a flat plate set into
motion impulsively.

The skin-friction coficient is expressed as

Cf=
@zL/q/)l#.o

W.glz

so that, from equation (17),

2V— e–red

cr%m

(18)
<

(lf)a)

Vah.m of c, are shown in graphical form in figure 3. When
ml is zero, equation (19a) reduces to the skin friction for the
nonelectromagnetic Rayleigh problem.

16

12

*cf

.8

.4

o

No magnetic field

Fixed relohve plate

I 1 I t

.2 .4 .6 .8

4

FIGURE 3.-Skin friotion parameter as a funotion of a magnotio
parameter.

The change in the veloci~ profile is a result of the force
exerted by the magnetic field on the fluid. The reaction on
the unit generating the magnetic field is ewrwed M

J J
-. ~dyF/unit area= UBOZ(U.-U)dy=uBo9e-m’; erf —

o 24Z

(lf)b)

The force per unit area goes to infinity as the upper limit of
integration goes to tity because the magnetic field extends



FLOW OF EIJNXRICALLY CONDUCTING FLUIDS IN A TRANSVERSI!l MAGNETIC FIELD 495

undiminished an infinite distance from the plate. Thereby,
an infinite amount of fluid is rwcelerated, resulting in an
intlnite force.

MAGNETICFIELDiIXEDIMLATIVBTO TEE FLUID

At all times leas than zero the fluid, magnetic field, and
plate are assumed to be at rest. At time t=O the plate
begins moving with velocity u=um but the magnetic field
remains at rest. The diilerential equation is the same as
equation (12) because there is no relative motion between
the fluid fit y= ~ and the magnetic field.

(20)

The boundary conditions are

U=um at y=O t>O

u=O at y>O t=O

Applying the Laplace transformation to equation (2o),
os was done in the previous section, yields the transformed
equation

v ‘—%=77(9+7%)dyl

The solution to this ordinary diilerential equation is

Z= 01(S)e-d%=+.,,<? ,
where the constant G is set equal to zero be’cause of the
requirement of a finite velocity at y= ~. The integration
constant, Cl(s), is found from the boundary condition at
y=o, tzo, as

c,(s) =:

Equation (2o) can be written as

–@Z+~=
(s+;l~–m,e ‘

This equation can be inverted with the aid of reference 30 as

‘=*[’-’J:”(*+=)+’+”f’(*+m)l)l

(21)

The symbol erfc denotes the complementary error function
defined as 1–er.f (see, e. g., p. 370 of ref. 31). The velocity
is once again dependent on more than one parameter so that
a single similar profile cannot be drawn. SeveraJ proilles
are shown in @e 2 (b). The fluid at y= ~ is not disturbed
in this case because the velocity across the magnetic lines
is zero. In the vicini~ of the plate the induced magnetic
force counteracts the acceleration force of viscosity resulting
in an increased rate of shear at the walls as expressed by the
skin-friction coelficient. \

(22)

Even at time, t= m, a friction force acts on the plate-a situ-
ation contrary to the previous cam and the Rayleigh problem.
Values computed by equation (22) are shown in figure 3.

The force on the magnetic field is given by

J
.F/unitarea= UBO%dy (23)

o

where”u is given by equation (21). The force is iinite in this
case.

Another case which may be of interest arises when the
magnetic field is fixed on the plate but a pressure gradient
c.ompene-atwfor the action of the magnetic field at y= ~. A
flow of this character maybe imagined to exist in the early
stages of boundary-layer formation on the walls of a two-
dimensional channel. The conducting fluid is,assumed to be
pumped through a channel containing a station~ transverse
magnetic field. A pressure gradient arises automatically to
compensate for the resistance of the magnetic field. The
equations then describe the boundary layer as a function of
time, after the pump has started. For this case equation (7)
reduces to

l?P.The pressuregradient ~ ~ 1sfound by examining the bound-

ary condition mentioned above at y= rn. At y= m

*=~lxu=o
at ~~

Therefore, at y= m,

and the above equation becomes equation (12). Since the
boundary conditions are the same as when the magnetic field
was iixed relative to the fluid, the results shown in figures
2 (b) and 3 apply here also.

BOUNDARYLAYERON A SEMI-INFINITEFLATPLATE

h the analysis of the boundary layer on a flat plate moving
impulsively, it was found that the shape of the boundary-
layer velocity profile changes with time, necessitating a new
calculation at each instant. Therefore, a simple transforma-
tion of the coordinates would not yield a similar solution
wherein all proflea could be drawn as one. It is then to be
expected that in the flow of an incompressible fluid over a
semi-irdinite flat plate in the presence of a magnetic field, a
similar solution will not exist. Since the boundary-layer
solution of Blasius is not known in closed form and the
veloci~ profiles at two diilerent stationa along the plate are
not similar, a numerical solution to a series expmsion is
found by the method used in reference 33. The first or
zero-order term is found to be the same as the Blasius solu-
tion which is well known and is tabulated, for example, on
page 103 of refermce 28. The tit nonzero term will be
calculated for the cases studied here.

The boundary-layer velocity and temperature proiiks will
be found for three cases. The conductivi~ of the fluid is
awuned to be uniform throughout the flow field in the fit
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and second cases. A particular variation is aeauned in the
third case. The mabwetic field is fixed relative to the plate
in the fit and third cases and relative to the fluid in the
second case. A fourth case is shown to be equivalent to the
second. In all cases the fluid will be assumed to be incom-
pressibleand to have a Prandtl number of l.s

MAGNEXIC FH3LD FIXED RELATIVE TO THE PLATE

Velocity proffle.-The magnetic field lines of fo~ce are
assumed to be perpendicular to the free-stre.mndirection and
to begin at the leading edge of the plate as indicated in
figure 4. Au experimental setup maybe imagined to consist
of a wing or flat plate in a stream of conducting fluid such as
mercury, sodium, or saltwater. A magnetic field is impressed
across the flow field using either
magnet.

% l-l!
43

----
Y ,/’

/

x

permanent or electro-

41u

-— —

FIGURE&—Fluid flowing past a semi-infinite flat plate in the presence
of a transverse magnetio field.

On the basis of the usual boundary-layer assumptions,
equation (7) reduces to

(24)

The boundary conditions are that u=O at y=O and U=um
upstream of the plate. At y= m, bu/by=O and &@x= —ml.
Outside of the boundary layer the continuity equation
requires that ho]hy=ml; therefore, ~OJ as y+w. If the
flow field is restricted to the vicinity of the surface of the
flat plate, no real difficulty arises. In an actual problem
the magnetic field will not extend uniformly to large distances
from the plate. At the location where the magnetic” field
strength dies out another viscous layer will develop. This
slip layer will.be ignored. Equation (24) is the same as the
incompressible boundary-layer equation except for the
additional term mlu. As was done in the Blasius boundary-
layer solution, the transfommtion,

(25)

is introduced. The stream function, $, is deiined as

where the functions j ~,jl, -fa, . . . are functions of q only.
The series expansion in& ISsuggmted by equation (21),

$Recent thearetfd mmputathms by IIansm (reL S4) fndfcats that when the alr h fordzed
up to 2) or 25percenk a more malMfo value far the Prendtl nmnk would be atit 0.S.
When the w bemmesfnlly W the Pmudtl numk drop off to the caderof O.OL

where the exact form of m is yet to be determined. lf the
expression (21) is expanded in a power series in mlt, the odd
power terms contributed by the first and second parts cancel
each other. Also, if these terins-are carried along in the
following analysis, the corresponding functions are found to
be zero. Therefore, only whole powers of mx will be
considered in what follows.

The velocity components and their derivatives nro found
from equations (25) and (26) as

U=U. ffo’+mxf2’+ (mx)1f4’ . . .] (27)

T1 U-V
5 ~ M+3m@z+5(mW.f4+ . . .] (28)

Similarly,

When

~= –f~[fo”+mzfi’+(mz)Y4”+ . . .]+

* [2mr$,’+4(mz)2j4’+ . . .] (29(L)

—.
: ‘mJ ~ Mfl+mzj2”+ (mz)lt,fl+ . . .] (29b)

a~u~—. 3~, Vz[fO”’+mxj~”’+(mz) ~4”’+ . . .] (290)

equations (27) through (29) are substituted into
equation ‘(24) and the like po~era “of

are equated, the following differential equations result:

2jo”’= —fo”fo

f,”’=fo’f,’+f,” –:f,fo”+f:

f4”’=2f;f4’ +f2:f2’ –; fof,”–:fdl’-;fdo” +f2’

etc.

The boundary conditions are

jo=f2=f,= . . . =0 at 7)=0

j/=J2’=j4’= . . . ‘0 at ~=o

-f/=1 andj,’=–l at ,1=~

f,’=f;= . . . =0 at ~=~
/

(30)

(31)

(32w)

(32b)
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The differential equations for j, and j, are linear ordinary
dtierential equations with variable coefficients. Since the
coefficients (Blasius solution) are not known in closed form,
the equations must be integrated numerically. Only the
functionsj~ andj, of the serieswill be found beeause the work
involved is sizable and it is the intent of this study to find
the over-all trends and gross effects rather than precise
results.

The Runge-Kutta method was used to integrate both the
homogeneous and nonhomogeneous forms of equations (32a)
and (32b). The integration is started at the surface of the
plate using two boundary conditions and then assuming a
value for jlr t and j4”. The correct solution is found by a
proper combination of the numerical solutions to the homo-
geneous and nonhomogeneous equations. The factor by
which the homogeneous equation is to be multiplied is found
from the boundary condition at q= W. The numerical
results forjq andj, are tabulated in table I (a). The velocity
proiiles shown in figure 5 (a) indicate that the flowseparation
at mx=O.6 will probably not be predicted if a sufficient
number of terms are taken in the series (27). The first
three terms (j,’, j~’, and j~’) describe the velocity in the
boundary layer quite well up to at leaat mx=o.2.

The skin-friction coefficient and the displacement & of an
incoming streamline are

~,_ O.664-l.789 %w+O.706 m%i– . . . + . . .—
W&

(33a)

6*=mxy+(l.73+0.54 mx+l.34 m%~+ . . . )J:

(33b)

The unit generating the magnetic field is aasumed to be
cmried by the aircraft. The drag on this unit caused by
the magnetic-field-fluid interaction is

Jw-
_F’/unit area= UBO%dy

o

Substituting equation (27),

=uB3&= V0+M2+ . . . )otim (33c)

The force is finite only for a conducting layer of finite
thicknes9.

Temperature profile,-When the pressure gradients are
reasoned to be everywhere zero and the usual two-
dimensional boundary-layer assumptions are made, equa-
tion (11) reduces to

,
If total energy is defined as

E= CPT+; (35)

6
mx=o---

4 -
/

/
/

; ,/
7

2 -

— 1s1order in mx

(o)
——— 2nd cwderm mx

04 0 .4 B I

6

4

7

2

0

.

(b)

*

2 .4

(a) Velocity.
(b) Temperature distribution for a cool wall, Tm= Tm.
(o) Temperature distribution for an insulated wall.
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FI~URE 5.—Boun~-layer profiles for fluid flowing over a zerni.
Mlnite flat plate with a transferee magnetio field fixed relative to
the plate.

equations (24) and (34) ean be combined to yield a d.iilerential
equation for the transport of total energy l?; that is, if
equation (24) is multiplied by u, added to equation (34), and
the I?randtl number, PT, is assumed to be 1,

(36)
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TABLE I.—MAGNETIC FIELD FIXED RELATIVE TO PLATE

(8) MrQml fmlciim (o) Tanperattm fanc-
tkm for Insulatedplate

(b) ‘remp’dnm fmlc-
Uon for cold plate
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Although the temperature distribution is altered by the ture with respect to z and y are found as
presence of the ma&etic field because u and o are a&cted,
the total energy of the conducting fluid is not. The kinetic
energy removed by the force of the magnetic field is exactly
equal to the heat generated by the electric current, inde-
pendent of the field strength B. ~d the conductivity u. An
analogy may be drawn by considering a similar sitnation for
an electric motor. Assume the motor to be rotating at a
given speed. The power is then turned OHand the arma-
ture is short-circuited. The motor will decelerate at a given
rate depending on the field strength, resistance of the circuit,
and rotational speed, just as in the fluid flow problem. The
temperature rise of the wires, insulation, etc., however, de-
pends only on the initial kinetic energy of the rotor. If the
conductivity of the wires (or fluid) is reduced, the time re-
quired to stop the motion will be increased but the total
Jyjr or joule heat is not changed.

A first-order estimate of the influence of the ‘magnetic
field on the temperature profile can be found from equation
(34) together with equations (25) through (29) and table
I (a). Arsume that

T= TO(q)+T,(@n~ + T4(q)m%?+ . . . (37)

[
~=~ mxT+2m%?T& . . . —

~ (T~’+mTg’+mWT4’+ . . .)] (38)

bT_bT bq_
~–~ &j– [

~ (TO’+ mxT,’+m’PT4’+ . . ,’)

When the various expressions are inserted into equation (34)
and terms containing like powers of mx are equated, the
dHerential equations for To and TZare

.

(39)

The boundary conditions are

To= Tm at T=O

TO=T- at q=~

T2’’=T3’=0 at q=w

‘ T,=O at 71=0

—

where, Tz, T4, . . .
d

are functions only of q=y ~ and

TI=T3=T6 . . . =0 as in the part of the problem dealing
with the velocity profile. The derivatives of, the tempera-



FLOW OF ELECTRICALLY CONDUO’ITNG FLUIDS IN A TRANSVER~ MAGNETIC ~LD 499

Tlm solution to equation (39) was first found by Pohlhausen
and is discussed on page 246 ff. of reference 28. The func-
tion To(q) is the temperature profile for a bo~dary layer
on a flat plate and is given by (assuming Pr= 1)

( ;;2) (HO’)*: (I–fo”) (41)l’O=T.+ l’u-Ta——
P.

The derivative of T. to be inserted into equation (40)
becomes

To’
(

= –j:’ TW–T.–~+u$ fo’)
P P

(42)

l?or simplicity, the temperature of the plate W be ~umed
to be the same as that of the fluid far from the plate; that
is, TV= T.. Equation (40) then becomes (Pr=l)

T“’+$T’-’’+%[:[J’J(:f’)+’+’)’+2+’~’~1=0=0
(43)

Equation (43) was integrated numerically by the same
method used for equation (32a) and the results are tabulated
in table I (b). Several temperature profiles are shown in
figure 6 (b). The quanti~ of heat transferred to the plate
Dor unit time is

(44a)

The local convective heat-transfer rate is (Pr= 1)

g _PuCOcP (().664-().704 mz— . . . ‘+ . . . )h=—–—
umf/2cp ~

(44b)

In the limit as the conductivity or field strength vanishea
(m+O), equation (44b) reduces to

(45a)

or by virtue of equation (33a)

Equation (45b) is often identified as Reynolds analo~.
A similar relation of equal simplicity was not found for the
problems treated in this paper.

The differential equation for flow over an insulated plate
is obtained from equation (40) by introducing the proper
expression for TO’. The solution of equation (39) for the
insulated plate case is (see, e. g., ref. 28)

To= Tco+~(l–f.”) (46a)

and therefore,

To’= –u& f:f:’ (46b)

Equation (4o) then becomes, for the insulated plate case
(PT= 1)1 .i

T;’+ ‘;f” fo’T,-&’ [: fdo’f.”–(J’)2-2fo’’j;’]=o
\

(46c)

The temperature profiles (table I (c)) for several values of
mz are shown in iigure 5 (c). It is to be noted that the re-
covery temperature is not altered by the magnetic field.
Such a result is to be expected since the magnetic field and
the fluid at the wall do not interact.

MAGNE1’IC FIELD FIXEO RELATIVE TO THE FLUID

Velocity proffle.—In this case the magnetic lines of force
move past the plate at the free-stream velocity. The fluid,
which is decelerated by the viscous action of the plate, re-
ceives a push from the magnetic field which counteracts the
viscous effect. Such a situation exists when a plate, vane,
or wing moves through u stationary eclectically conducting
fluid and magnetic field. The boundary layer on a wing of
an aircraft flying in the ionosphere over the magnetic poles
of the earth could be considered to correspond to this
case. Under these circumstances, equation (7) reduces to

(47)

If the transformation-of coordinates and the stream function
described by equations (25) and (26) are introduced into
equation (47), a set of or&nary linear differential equations
with variable coefficients is found for fz, f~, . . .

f2’’’=f;f;f:f;f; fd:f+f:+l:–l (48a)

f; ’’=’f:f[+j;f; _; foj:qf~;f
–;j4j0’’+$’ (Mb) -

The boundary conditions are

fo=f2=f4= . . . =0 at 71=0

fO’=f2’=f4’=’ . . . =0 at q=O

jO’=l andf,’=j4’= . . . =0 at ~=co ‘

The integration for fz and f4 ~as carried out by the same
method described in the previous section and the results are
tabulated in table II (a). Several velocity profiles are shown
in figure 6 (a). The difference between the iirst- and aecond-
order curves is small at small values of mx. However, the
separation of the mx= 0.5 curves indicates that the series
expression (27) does not converge rapidly. hl.re than two
terms in the series must then be used if the velocity profile
is to be predictad accurately at values of ‘mx higher than
about 0.2. The local skin-friction coefficient is

0.664+2.293 mz–2.768 m?.P+ . . . – . . .
c~

WZ
(49a)
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(a) Velocity.
~) Temp&ature distribution for a cool wall, T.= Tm.
(u) Temperature distribution for an insulated wall.

FIGURE 6.—Boundary-layer prdea for fluid flowing over a eemi-
infinite flat plate with a transverse magnetio field tied relative to
the fluid.

and the displacement thickness is
—

6*=(1.73—2,21 mx+5.22 m%— . . . + . . . )&

(49b)

The disturbance caused by viscous action on the plate
redts in a force on the magnetic fi81d,which is given by

J
w.

.E’’unit area= uBO@m-u)dg
o

From equations (27), (66), and table II (a),

F/unitarea=uBoGJo’”m(1–ji–mz.f2’–. . . Mq

= (1.73–2.21 mz+5.22 m’&’–

+. . . . . . )uBZG

= o-u.8*BoZ

(49C)

The force would appear as a reaction on the unit generating
the magnetic field and not on the model which disturbs the
fluid.

Equation (47) is identical with the differential equation
for the caae when the magnetic field is tied with reaped to
the plate and a pressure gradient exists just strong enough
to compensate for the electromagnetic effects at q= ~,
The boundary conditions and, hence, also the numerical
results of table II (a) and figure 6 (a) can be applied to this
problem.

Temperate proiile.~ince the magnetic field lines are
now moving relative to the plate, the expression for the
electric current in the-fluid is

j=uBO(u–uJ

The equation for the transport of thermal energy in the
boundary layer then becomes

If equations (47) and (50) are combined to describe the
transport of total energy in the boundary Jayer (PT= 1)

~ljljl

w &E+Pv $E+%(u–u&309=P -@ (61)

where, as before, E= OPT+ ~“ It is seen that the presence of

the magnetic field adds energy to the local element by doing
-work on the fluid retarded by viscosity. The magnitude of
the work depends on the velocity, electrical conductivity,
and field strength.

When the transformation of coordinates, equation (26),
and the series expansion, equation (37), are inserted into
equation (50); a set of differential equations is obtained for
T., Tz, T4, . . . The relation for To is the same as equation
(39) and that for T, is .
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TABLE 11.—MAGNETIO FIELD FIXED RELATIVE TO FL-&D

(a) Sti !m@fon (b) Temwtmw tMc- (0) Teqmatum frmc-
tlon for cold plah Uon for irmdated plate
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When the expression (42) is inserted into equation (62a) and
it is assumed that T.= T. and Pr= 1, the result is

501

‘bation profiles are obtained by inserting equation (46b) into
equation (52a). .

~“+!T’-’’+%[:fJ’f(&”)+”)+
. (52b)

The boundary conditions me

T,=O at T=O

The numerical integration of equation (52b) was carried
out by the method used earlier and the results are tabulated
in table II (b). The temperature proiiles shown in figure 6
(b) correspond to the same values of mx shovvnfor the veloc-
ity profiles in figure 6 (a). The temperature gradient and
the heat transfer to the wall are, respectively,

%lo=5il@0332+2022m+~)
q _P%G

— (0.664+4.044 mx+ . ..) (53)
‘W— =

The recovery temperature for an insulated plate is altered
by ‘the relative motion between the magnetic field and the
fluid at the plate. The diilerentia.1equation for the pertur-

T2”~ T“-f:Tz
3U %

–* f&’f/’+&’ [(1–fo’)2+2f0’’f2’’l=o
9 P

(w-l)

Several typical temperature proiiles (table II (c)) are shown
in figure 6 (c). The recovery temperature at the wall is
changed due to the~z/u or joule heating caused by the relative
motion between the magnetic field and the fluid at the plate;
that is, the recovery temperature at the wall is given by

T,)V.0=TO+l.614 ‘~ mx+ . . . – . . .
P

TJ,.o=T.+~ (1+3.228 mx+ . . . – . ...) (54b)

The heat transferred to the plate may also be written as
~=~(Tr— T.), whm T, is the recovery temperature given
by equation (54b) and 2’. is the wall temperature. Since
the magnetic field increases T, as well as r, the heat-transfer
rate is increased in two ways.

MACWBTIC FIELD FIXED RELATIVE TO PLATE-FLUID OF VABIABLE
coNDucTIvTrY

Velooi~ prollle.-Numerous problems in fluid dynamics
exist wherein the electrical conductivity of the fluid or the
strength of the magnetic field changes with distance from
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the surfam. The magnetic field strength can be varied
somewhat by the design of the apparatus. It is possible to
adjust not only the strength of the field but also the variation
with distance from or along the surface within certain phys-
ical limits. A @t approximation to the shape and magni-
tude of most magnetic fields would be a uniform magnetic
field of constant magnitude throughout the flow field. Such
a magnetic system will once again be chosen for this case.

The electrical conductivity of the fluid would be expected
to vary in a complicated manner in directions along and
perpendicular to the surface and born one situation to the
next. The constant value chosen for the conductivity in the
two previous cases is not realistic. The conductivity will
vary under actual conditions of flow in a boundary layer.
This will surely change the skin friction and heat transfer
from that found in the last two cases. A logical variation
will be studied in this section to see how large an effect a
variable conductivity will have on c, and h.

It is to be expected that the conductivity will vanish at
the outer edge of the boundary, layer and reach a maximum

somewhere near the surface. The equations which can be
used to determine the number of ions (and hence conductiv-
ity) in a stream at high temperature or under circumstances
wherein combustion is taking place, are cumbersome.
Therefore, a simple, approximate, analytical relation for
the electrical conductivity as a function of temperature
between the plate and outer edge of the boundary layer
was not found. The conductivity of air after the passage
of a normal shock wave has been measured in a shock tube
and reported on page 339 of reference 3. The conductivity,
is reproduced in figure 7. At Mach numbers above 20, the
results are approximated by a shaight line.

In view of the lack of knowledge of the variation of u in
the boundary layer, a linear relation between the velocity

i

/

.-

Theory -.

1 I 0! I [
,- . .

1

L
0 Iu Lu J

Mach number

Ikurm 7.—Electrical conductivity of air as a function of shock wave
Mach number as found in reference 3.

decrement and the conductivity will be ahosen for this
case. Therefore, it &.11be assumed that

()_—uu
a= U. u. (66)

where UOis the conductivity at the surface, where u=O,
Whether equation (55) is realistic is uncertain. Inserting
the expression (55) into equation (24) gives

(66)

As before, an ordinary differential equation for ench of the
functions Yz,j4, . . . results when the variables in equations
(25) and (26) are inserted into equation (66) and like powers
of mx are equated.

f,’ ’’=ff,f;’–; f,fo” –; fof2’’+fo’ (l–fO’) (57rL)

f4’’’=2f:f+f*ff 2f;fJ4f;f2f2;;f 4#’’–;f4# ‘+ f2’–2j,’ jot

(57b)
The boundary conditions are,

fo=f2=f4= -.. =0 when q=O

fo’=f,’=f,’= . . . =0 when 7=0

fo’=l, f,’=f,’= . . . =() when ~=m

The numerical integration of equation (57a) was carried
out for $ by the method used in the other cases and the
results are tabulated in table III(a). Typical boundary-
layer velocity proties are shown in figure 8(a). The local
skin-friction coefficient is

0.664-0.627 mzh . . .~—
w%

(68a)

and the displacement tbickmm is

6*=(1 .~3+0.97 mx+ . . .)g (58b)

The force on the unit generating the magnetic field is
expressed by

JF=uBO* ,@” (1–j:–mzf,’– . . .)(j,’+

‘?nxf,’+- . . . )dq/unit area

The integral is evaluated through the use of equation (67a)
and table III (a) as

F=uBO~m (0.664+0.649 m.z+ . . . )lb/unit men (69a)

or, integrating from the leading edge ,to z,

l’=; XUJIO= (0.664+0,.390 mx+ . . . )lb/nnit width

(5$b)
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Temperature distribution for an insulated wall.

Fxmrrm 8.—Boundary-layer profika for fluid flowing over a semi-
infinito flat plate with a traneveme magnetic field tied relative to
the plate-thdd of variable conductivity.

5213U97-0~3

Equation (59a) or (59b) expresses a ~~ force on the plate
which is to be added to the friction drag. In coefficient
form, the local drag per unit area on the plate due to the
magnetic field is

“=Jm;‘1”3%+1”299‘z+ “ “ - ) @on)

When equations (58a) and (60a) are added, the net local
force coefficient to a tit order in mx is

.
–~ (0.664+0.701 rnx+. . . )

‘:–m& (60b)

The interference of the magnetic field reduces the skin fiction
at the expense of a higher drag.

Temperature profile.-The thermal-energy transport
pquation is reduced in the manner used in the previous
eases. The electrical or joule heating is now described by

Equation (11) isthen

(61)
‘\

If equation (56) is multiplied by u and added to equation
(61), the resulting equation for the transport of total energy
is identical with equation (36). Once again, the tempera-
ture distribution is changed but the total energy of the
fluid is not altered by the presence of a magnetic field.

The change of variables & q, the stream function, 4. and
temperature expansion given by equations (25), (26), and
(37), respectively, are now introduced into equation (61).
A set of linear ordinary differential equations for To, T*9
T<, . . . is obtained for this case when lib powers of mz
are equated. The expression for To is once again the same
as equation (39). The differential equation for T2is

T,’’+ foT,’
—–fo’T~+;.fsTo’+”@ [(1–f:)f0’’+2fY fJ’l=OF2

(62)

If it is assumed that Pr= 1 and the expression for To’ is
inserted into equation (62), the result is

T;f+ft_$’T,+

Nnmerieal integration of equation (63) wrIs carried out
by the method used for the previous cases. The results
are presented in table 131 (b) and several temperature
proiiles are shown in figure 8 (b). The coeilicient for the
convective heat-transfer rate is given by

–~ (0.664-0.206 mz– . . . + . . . ) (64)
‘–pm
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TABLE 111.-MAGNET1C FIELD FIXED RELATIVE TO PLATE—VARIABLE CONDUCTIVITY
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of the magnetic field on the heat-transfer
rate and skin fiction is not so hrge in this case as in either
of the two previous cases (eqs. (33a), (44b), (49a), and
(53)). From these results it is apparent that the ch~ge in
the heat-transfer rate. and the skin friction k strongly
dependent on the manner in which the conductivity (or
magnetic field strength) vary through the boundary layer.
A magnetic field which changes in strength with distance
from the surface and a variable conductivity are. to be
espected in the real physical situation.

The differential equation for flow over an insulated plate
is obtained by substitution of equation (46b) into equation
(62) .

T2’’+f~-fa’T2~f&’fo”~’ [(1–.fo’)f:’+~jo’’.l=ol=o

The temperature proiiles for several values of mx are shown
in figure S (c) and tabulated in table IIC (c). As would be
expected, the recovery temperature at the wall is not altered
by the magnetic field because there is no relative motion
between the fluid at the walI and the magnetic field.

MAGNR’1’ICPARAMETER

The importance of the magneto-hydrodynamic effect
depends on the size of the ma@etic parameter m= uBt/gnL..
The usual engineering units are: u in mhos/inch; Bo in lines./
square inch; P in slugs/cubic foot; and u. in feet/second. If
each of these quantities is expressed as such, the parameter
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mx will be dimensionless only if multiplied -
relates the various dimensional quantities. When the cor-
rect conversion factom are insert~d, reference 27,

where PO=0.002378slugs/ft3 is the air density at sea 10VOI.
Another method of fiding the conversion factor for m is

to combine the electric motor equations (ref. 36)

F=8.8507X10-8 BJi lb (f36rL)

E= BJuX10-8 volts=; (66b)

so that
Force
—=8.8607X10-” .B} *U13 .

or
force/13 =(8.8507) (1728)10-10 uB? per ~ch

‘-PO(PIPOW 0.002378 (PIPCM

=6.432X 10-10 ‘Bog per inch
(PIP.)%
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In words, the pmnmetm m expresses the ratio of electro-
magnetic force density to dynamic pressure.

The value of m.can easily vary over many orders of mag-
nitude. However, the density p and velocity u associated
with a pmticuhr vehicle are generally lixed within relatively
nmrow knits. It remains, then, to adjust the conductivity
tindmagnetic field strength so that the desired characteristics
me achieved. The limits for the magnetic field strength lie
between zero and a. maximum (discounting astroph~ieal
possibilities) of about 10‘lines/sq in. The electrical con-
ductivity depends on the fluid considered and cm vary over
wide limits from very small values for insulatom to approxi-
mtitely 10Umhos/inch for metals. ” The results of several
investigations of the conductivity of gases will be discussed
in the next section.

ELECTRICAL CONDUCTIVITY

The information on the electrical conductivity of gases
under the special conditions of this report is not large.
However, it is known that the air around a missile will be
a conductor if: (1) the energy imparted to the air is great
enough to ionize it; (2) metal is ablated from the missile;
(3) the missile is in the ionosphere where the air is ionized
by radiation horn the sun; or (4) other special devices are
used to ionize the air, such ns irradiation by high energy
particles.

Tho electrical conductivity of air behind a normal shock
wave has been measured in a shock tube and is reported on
page 339 of reference 3. The results, replotted in figure
7, indicate conductivities of the order of 1 to 5 mhos/inch
for air behind strong shock waves.

I?iringsof ultraspeed pellets, referenws 36 through 39, in-
dicnte that another phenomenon will enter the problem of
conductivity. Photographs and spectrographs taken with
special cameras show that metal is eroded or ablated from
the pellet find swept off the model into the wake where it
burns. Since the metal is in a liquid spray or vapor form
while it is in the vicinity of the pellet, the conductivity there
would bo increased by a sizable amount. It would bb difE-
cult to estimate the orders of magnitude to be e.spected.
The tests show that, the air can be made a conductor by
ionization of its molecules and atoms and/or by metal vapor
or spray eroded from the surface of the vehicle. It is pointed
out in reference 40 that the latter effect predominantes when
meteors enter the earth’s atmosphere.

The air in the ionosphere is partially ionized by radiation
from the sun so that it is a conductor without addition of
energy from the aircraft. The amount of ionization at
various altitudes and the total number of particles are listed
in tables 2 and 9 of reference 41. A rough estimate of the
conductivity is found from reference 7 as

?@lo——=3X 10-10n ~ mhos@lch
‘—meU@

(67)

6C/d elretrhmlcandrrctomXO ohmy%gocd hat eonductom The retlo mey M mprcssed
nrmrorlrnnMYn9(ref. 7),. .

H(:)’
where k h the cmrncknt of thernml mndnetkity, r is Boltzmemn’s constant, and e Is the
cbnrgeon on electron

where e, l,, me, and U, are the charge, mean free path length,
mass+, and velocity, respectively, of the electron and ATOand lV
are the particle density at sea level and the altitude in ques-
tion. The factor n is the electron density. The values for
u range from 104 mhos/in. at 62 miles altitude to about 32
mhos/in. at 250 miles altitude.

The large variety in fuels makes it difiicnlt to bracket the
magnitude of the conductivity of combustion products but
information is available for several cases. It was reported
in referenca 5 that the conductivity of the jet from rL50-
pound thrust acid-aniline rocket motor was measured as
being about 10-e mhos/in. It was added, however, that the
addition of a small amount of an impurity such as sodium
would strikingly increase the electron density.

A discussion is given in referenm 6 of similar experiments
and theory on the combustion of hydrocarbon fuels. The
experimental evidence required that the number of electrons
in the combustion products (10’1 to 101~per cc) be several
orders of magnitude greater than predicted theoretically
(lOs to 10’ per- cc). The maximum conductivity can be
estimated by equation (67) to be roughly 10-2 mhos/iich.

Although the conductivities discussed are low compared
with those of metals, they appear to be large enough so that
appreciable magneto-hydrodynamic forces can be exerted.
If the conductivity is too low for a specific case, it may be
possible that alkaline salts or some other additive can be
used to increase the number of free electrons and ions.

APPLICATIONS

The possibility of using a mab~etic field to prevent n hot
fluid from coming in contact with a wall which it would C@
solve or destroy was discussed in the introduction. The
extent to which this can be accomplished is measured directly
by the parameter m= (uB)/pu.). The larger the parameter
m is, the more effectively the “fluid suspension” process can
be carried out. The influenm of the magnetic field on the
fluid is expressed in equations (33), (44), (49), (53), (58), . . .
by the product mx. The distance z represents an “adjust-
ment distance” required before the fluid responds a given
amount or adjusts to the magnetic lines of force. If the
magnetic parameter is very large, the adjustment distance
will be very small and the fluid will follow the magnetic
lines of force quite closely as indicated in iigure 9. The
magnetic force restrains any motion across the lines of force
because the inertia forces are insiicant in comparison. In
this limit the magnptic lines of force are the same as iuvkible
solid boundaries.

% -- Stream&w,.,
,

Strw3ure -J’

W& ‘-N@7etic Ik5

FKWRE 9.-Sketoh of fluid of high electrical ctmductivity flowing~over
a surface.
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If the parameter m is very small the adjustment distance
x becomes very large and the influence of the magnetic field
becomes negligible.

The numbers quoted in the last section for the conductivity
und field strength indicate that most of the applications will
lie between the two extreme limits.

PLOWOVERAEIGH41PE~=CLE

h&kgneto-aerodynamic effects may be used to alter the
mt ernal flow over aircraft. Examples which illustrate the
changes in the boundary layer wiIl now be discussed. It wilI
be pointed out that the skin friction on an aircraft might be
reduced by judicious use of a magnetic field either to inhibit
transition to turbulent flow or to alter the boundary-layer
profile.

It hm been shown in reference 13 that the Reynolds num-
ber of transition is raised when a coplanar magnetic field is
applied. The results of reference 13 can be used m a rough
estimate for flows of the boundary-layer type when the par-
ticular velocity distribution may be approximated by a para-
bolic profile. This is permissible since a coplanar magnetic
field does not change the velocity profile, which is not so for
the cases considered in this paper.

The results of reference 14 for a transverse magnetic field
apply to a two-dimensional channel and should not be used
for flows of the boundary-layer @pe because of the change
induced by the magnetic field on the velocity profile. For
the flow in the two-dimensional channel the change in the
velocity profile was largely responsible for the resistance to
turbulence. The samewill not always be true for other types
of flow fields. It will then in general be necessary to carry out
a stability calculation in order to determine whether a trans-
verse magnetic field tends to stabilize or destabilize the
boundary layer. A situation wherein the magnetic field
destabilizes the flow field is presented in reference 26,
warning one that the presence of a magnetic. field does not
always decrease the likelihood of transition.

The numerical results of table I and the equations (33)
and (44) may be used to estimate the effects of a magnetic
field attached to an aircraft on boundary layem of uniform
electrical conductivity. The model analyzed theoretically
will probably never be duplicated in a physical situation.
However, circumstances may arise wherein the conductivity
and ma~gnet,icfield are such that they vary onIy slightly or
are almost uniform in a layer of finite depth. This might
occur, for emmple, (1) in the boundary layer of high+peed
aircraft; (2) in the region between the surface of a blunt
body and its shock wave; (3) in local regions near an aircraft
when material is being ablated from the surface; or (4) in
the ionosphere wherein air is ionized by radiation &em the
sun (ref. 41) and is then a uniform conductor, provided the
influence of the aircraft is and. The fact that the layer is
of tite thicknees causes the equations to be in error at the
interfawa However, if the conducting layer is relatively
thick the equations would serve as a good estimate in the
vicinity of the surface.

The second semi-infiniteflat plate casewhich was analyzed,
equations (49) and (53), could be thought to correspond to
flight over the magpetic poles of the earth or through some

other magnetic field. The electrically conducting fluid
could come about by the same processes mentionod in tho
previous paragraph. As before, the magnetic field strength
and electrical conductivity will probably not correspond
exactly to the model analyzed. A close apprminmtion is
obtained when an aircraft flies through the ionosphere over
one of the magnetic poles of the earth (provided the influence
of the aircraft on the electrical conductivity of the air and
on the magnetic field is small). Siice the earth’s ma.gmtic
field is small (BO=4 lines/sq in. from ref. 42), effects of this
type are generally negligible in the lower reaches of tho
ionosphere. At the higher altitudes the magnetic prmmetor
is large enough to cause a change in the heat-transfer rate
but at those altitudes the mean free path is so lingo that the
continuum flow analysis of this report is no longor applicable.

If the air in the boundary layer is ionized by frictional
heating, the conductivity of the air will change with distance
from the surface (fig. 10). The actual variation to bo
expected would be ditlicult to predict theoretically. The

FIQUEE 10.—Airomft moving through the atmosphme rd high spoocl.

solution for a boundary layer with variablb electrical con-
ductivity found in a previous section of this paper (eqs.
(58), (59), (60), and (64)) and tibulated in table III can bo
used as an approximate answer. Equation (58) shows that
the skin friction can be reduced by a sizable amount at tho
&pense of increased total drag (see eq. (60)), The advrm-
tages of using a magnetic field lie in the pomibility of reducing
the aerodynamic heating, as expressed by equation (64).

The preceding discussion dealt with the advantages that
may be achieved by reducing the skin friction, heat transfer,
or turbukmce. Favorable effects may also be obtained by
increasing the displacement thickness of the boundary layer,
Such a device, &me 11, could be used on the lower surfaco
of a wing or body to induce forces for lift, control purposes,
or drag. The magnitude of these forces is easily changed
by increasing or decreasing the field strength which in turn
increases or decreases the displacement thickness.

Several additional problems arise when magneto-hydrod-
ynamic effects are used. The system generating the
magnetic field will need to be cooled since its parts will
dis4pate power. Also, the weight of the unit required to
generate a magnetic field of su.flicientstrength may be too
large to consider, or of such a size that any advantages am
nullified. If the slow moving fluid is hot enough to radiate
enem, a sizable quantity of heat may be tramfmred even
though the hot fluid is not in contact with the surface. An



FLOW OF EIJWTRICALLY CONDUCTING FLUIDS IN A TRANSVERSE MAG-C FIIILD 507

--—-—---—-————————

lhxrrm 11.—Schemntic diagram indicating use of rnagnetio field to
build up the boundary layer on a wing for lift or control purposes.

evaluation of this effect would require a more complete
analysis than the solutions developed in this paper.

Whether the applications just discussed crm actually be
mado depends on the magnitude of the quantities entering
the pnrnrneterm. Consider, for example, an aircraft moving
through the upper atmosphere at 25,000 feet per second.
From figure 7, a conductivity of not over 5 mhos~umhis to be
expected. If p/palis taken m 10-4, and the above values are
inserted into equation (65b),

m=&43X10-lo@&)-9B22.5 0

In figures 6,6, and 8, it is seen that the product mz should be
of the order of 0.1 for a notable magneto-aerodynamic
effect to be brought about. H z is takm aS about 100
inches, the magnetic field strength, 130,should be around
1000 lines per square inch so that the product mz is equal
to 0.1. A magnetic field of such a strength is not unreason-
able.

FLOWINPIZOPULSIONUNITS

The discussion on the reduction of skin friction ind heat-
tmnsfer rate to the walls of an aircraft by electromagnetic
forces applies as well to the internal flow of reaction engines.
It may be added that a uniform magnetic field across the
jet stream corresponds to the channel flow problems studied
in references 8 to 12 and 14. In general, imposing such a
field increases the skin friction, equation (49a), and lowers
the thrust because of the interference of the magnetic field.
A compensating influence is realized through a reduction in
turlmkmce in the stream (see, e. g., refs. 9 and 14) which
lowers the skin friction, heat transfer, and probably the
noise level of jet engines. Shallow magnetic fields appear to
be the most promising for reducing the heat transfer if the
flow is nearly lamirmr.

The cases and illustrations considered so far have aasumed
that an electric potential E has not been applied across
tho fluid. To do so would add another force term (see eq.
(2)) to equations (7) and (11). If a source of power is
available, rLcombined electric and magnetic field can be
used to maneuver the fluid. A possible application would
be to use the combined fields to induce an electric motor
action to obtain very high exhaust velocities.

CONCLUDING REMARKS

The laminar boundary-layer solutions presented in this

paper for the flow of an incompressible electrically conducting
fluid over a flat plate indicate the changes that will be
brought about, by a transverse magnetic field. It has been
found that the skin friction and hea&transfer rate are re-
duced if there is no relative motion between the plate and the
magnetic field. The skin friction and heat-transfer rate in-
creased in the case where relative motion was assumed. In
all the eases studied the total drag was increased.

The product of the magnetic parameter m and an adjusk
ment distance x is the quantity which determines the effec-
tiveness of the magnetic field to change the heat-transfer
rate. Other studies have shown that a magnetic field will in
certain cases inhibit transition to turbulent flow and thereby
retain a lower heat-transfer rate.

All the cases studied, except one, assume that the con-
ductivity and magnetic field did not change with distance
from the surface. A more realistic case of a variable conduc-
tivity was considered in one example where a special variation
was chosen. The reduction in heat-transfer rate and skin
friction for a given value of mx was not as large as when the
conductivity was constant. This points out the importance
of considering the way in which the conductivity and mag-
netic field strength change with distance from the sudace.
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